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Abstract. An infinite number of exact solutions for the ground and excited states of an 
s-wave hydrogenic atom with the perturbation V ( r )  = g r + A r 2  are constructed, subject to 
special relations between g, A and the nuclear charge 2. A powerful method of Stieltjes 
moments is employed to generate rapidly converging upper and lower bounds to the 
ground-state energy E J Z ,  g, A )  for arbitrary g, Z and positive A. The accuracies of these 
bounds are relatively insensitive to the strength of the perturbation. The moment method 
also generates the exact s-wave ground-state solutions mentioned above. 

1. Introduction 

Radial hydrogenic perturbation problems with Hamiltonians of the general form (in 
atomic units) 

A = + @ * - Z / r +  V ( P ,  r )  (1.1) 

where /3 denotes a vector of coupling constants, have been studied in a wide variety 
of contexts. Special radial perturbations represent simplified versions of important 
physical situations encountered in atomic and molecular physics as well as astrophysics 
and solid state physics. For example, in the general family of perturbations V = p r P ,  
the case p = 1 corresponds to a spherical Stark effect in hydrogen (Austin 1981, Vrscay 
1985) while p = 2 may be considered a spherical quadratic Zeeman effect (Killingbeck 
1977, Avron 1981). Such potentials have also been studied in the context of non- 
relativistic quark confinement potentials in quantum chromodynamics (Eichten et a1 
1978, Quigg and Rosner 1979, Vrscay 1984). More complicated series expansions of 
the perturbation, such as 

serve as important models of screened Coulomb potentials 
The perturbation in (1.1) corresponding to Z = 1 and 

V = 2pr  + 2p2r2  P E R  

Lai 1981). 

(1.3) 
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has received much attention which, in fact, motivated this particular study. Killingbeck 
( 1978b) discovered that a Rayleigh-Schrodinger perturbation series expansion for the 
ground-state energy, having the form 

truncates after the first-order term. The underlying reason is that this particular 
Hamiltonian admits the exact ground-state solution $( r )  = exp( -r  - pr') with energy 
eigenvalue E = -;+3p. The solution (and eigenvalue) are valid only for p 3 0, corre- 
sponding to the region of quadratic integrability of the wavefunction. Saxena and 
Varma (1982a) formulated a perturbation theory for the region p < 0 in powers of 
( -p ) - "2 .  They also constructed sets of exact s-wave polynomial solutions for both 
cases p 5 0 and p < 0 (Saxena and Varma 1982b). 

In this paper, we examine a generalisation of the potential in (1.3), namely the 
Hamiltonian 

f i = $ ' - Z / r + g r + A r '  (1.5) 

where Z represents the variable (positive) nuclear charge and g and A represent 
independent coupling constants, with the sole constraint that A > 0. Our study serves 
two purposes. 

( i )  Using traditional methods we construct an infinite family of exact s-wave 
polynomial eigenfunctions of (1.5), subject to special relations between Z, g and A. 
In  the case Z = 1, g = 2p and A = 2p2, these solutions reduce to those obtained by 
Saxena and Varma (1982b). 

(ii) We employ a powerful method of moments (Handy and Bessis 1985) to generate 
upper and lower bounds which converge rapidly to the ground-state energy E,(g, A ) .  
In addition, the moment method will also be shown to generate the exact s-wave 
solutions discussed above, again provided that the special relations between Z, g and 
A exist. 

2. Exact solutions 

The Schrodinger differential eigenvalue equation for the s-wave Hamiltonian in (1.5) 
will be written as 

dr2 r d r  r 

We now assume power series solutions of the form 

where 
X 

d ( r ) =  C cmrm. 
m = O  

Substitution into (2.1) yields 

(2 .3)  
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and the following three-term recurrence relations between the power series coefficients: 

( m + 2)( m + 3 ) ~ , + ~  + [ 2 2  - 2 b( m + 2 ) ] c m +  I 

+ 2 [ E  +ib'- a ( 2 m  +3)]cm = O  m =0,  1 , 2 , .  . . . ( 2 . 5 )  

For polynomial solutions cb( r )  = #,( r ) ,  where 

the recurrence relation ( 2 . 5 )  terminates if c,+, = 0 and E + f b 2  - a ( 2 n  + 3)  = 0, i.e. 
1 / 2  

E = E,  = ( 2 n  +3)( i) - g2/4h .  (2.7) 

The equations in (2.5) form a system of n linear homogeneous equations for the 
c,, for which solutions are guaranteed provided the following determinantal condition 
is satisfied (Cramer's rule): 

Z - b  1 

2 na Z - 2 6  3 0 
2 ( n - l ) a  2 - 3 b  6 

. .  
0 in( n + I )  

2a Z - ( n + l ) b  

= 0. (2.8) 

This condition provides a necessary relation between Z, g and A to exist for each 
solution (CI, with eigenvalue E , .  An expansion about the last row or column of the 
determinant D, in (2.8) gives a three-term recurrence relation for contiguous deter- 
minants, namely 

Di=[Z-(i+l)b]Di-,-ai(i+l)Di_z i = 0, 1 ,2 , .  . . D-2 = 0, D-, = 1. 
(2.9) 

Let us now mention that the special case of (2.1) studied by Saxena and Varma 
(198%) corresponds to Z = 1, g = 2 p  and A = 2 p 2 .  The parameters in (2.4) become 
a = /3 and b = 1. The energies E,, of the exact s-wave polynomial solutions in (2.7) as 
well as the determinants D, in (2.8) reduce to the two sets of results presented in the 
above-mentioned reference, dependent upon whether the parameter /3 is positive or 
negative. 

3. Upper and lower bounds and exact solutions via moment methods 

In this section, we employ a powerful moment method developed by Handy and Bessis 
(1985) which is based on the positivity property of the ground-state wavefunction. Its 
application to a number of problems has been outlined in the above reference. The 
power of the method is demonstrated in several properties. Its applicability is not 
restricted to special classes of potentials (e.g. bounded or positive definite); rather, it 
can accommodate general rational function potentials. Not being based on any conven- 
tional perturbative or variational method, it yields rapidly converging upper and lower 
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bounds for a wide range of coupling constant values (i.e. low field as well as high 
field). The moment method does not depend upon any form of basis function 
expansion. As such, its application to hydrogenic perturbation problems is not plagued 
by the existence of unperturbed continuum states. 

It must be mentioned that other excellent methods of calculating ground- and 
excited-state eigenvalues have been derived for such one-dimensional systems; for 
example, the moment method of Killingbeck (1978a), cited by Richardson and Blanken- 
becler (1979) and Blankenbecler er a1 (19801, and simplified by Killingbeck er al(1985). 
An important feature of the present method is that this moment formulation simul- 
taneously provides upper and lower bounds to eigenvalues. In usual practice, of course, 
widely separate techniques of calculating these bounds are employed, e.g. variational 
methods as opposed to intermediate Hamiltonian or inner projection methods. Our 
main goal here is to demonstrate how precise and  rapidly converging upper and lower 
bounds may be obtained. Some surprises, even in one-dimensional cases, can occur. 
For example, a combined Pad6 Hellman-Feynman hypervirial approach yields a 
ground-state eigenvalue of E,= 1.017 281 60 for the 'laser physics problem' ( A  = 0.1, 
g = 2) of Lai and  Lin (1982) while Hankel-Hadamard determinantal inequalities yield 
the exact bounds 1.017 176< E,< 1.017 185 (Handy and Bessis 1985). 

In our application of the moment method to the ground state of the Hamiltonian 
in (1 .5) ,  we first define 

F (  r )  = r exp( -ar2 - br)+(  r )  (3 .1)  
where + ( r )  is the ground-state solution of the eigenvalue equation (2.1) and a and b 
are parameters given in (2.4). If we substitute + ( r )  in (3.1) into (2.1), the following 
differential equation for F (  r )  is obtained: 

d2  F d F  
d r  d r  

r ?+ 2(2ar2 + br)-+ [( b2+ 2a + 2E)r + 221 F = 0. 

Now introduce the moments of F ( r ) ,  

P,, = jox r " F ( r )  d r  n = 0, 1 , 2 , .  . 

(3.2) 

(3.3)  

which define a Stieltjes moment problem (Henrici 1977, Baker and Graves-Morris 
1980) since F ( r )  > 0 for r E [0, CO). If we multiply (3.2) by rn  and integrate over [0, oo), 
we obtain the following three-term recurrence relations for the moments p, : 

[ Z  - ( n  + l ) b ] ~ , ,  +in( n + 1 ) ~ , - ~  
(2n +3)a - f b 2 -  E F n + l  = (3.4) 

If we consider F ( r )  to be normalised so that po= 1, the moments p l  and g2 are then 
given by 

2-6 
3a-;b2-E PI = 

( Z  - 2 6 ) ( Z  - b ) + 3 ~  - i b 2 -  E 
"= ( 5 a - f b 2 - E ) ( 3 a - i b 2 - E )  ' 

In general, we have 

(3.5a) 

(3.5b)  
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H ( n , m ) =  

where the polynomials P, satisfy the recurrence relation 

P,,, = [ Z  - ( i  + 1) b ] P ,  + f i (  i + 1)[ (2i + 1)a - f b 2  - E ] P , - ,  
(3.7) 

We now use the fact that a necessary and sufficient condition for the sequence of 
positive numbers p, to be moments of a non-negative function is that the Hankel- 
Hadamard determinants (Baker and Graves-Morris 1980), defined as follows: 

Po= 1 PI = Z - b. 

Pn Pn+1 ‘ .  * Pntm 
Pn+l P n + z  . . ‘  P”+Wl+l . 

Pn+m Pn+m+l . ‘ .  PL,+2m 

H ( 0 ,  m )  > 0 and H(1 ,  m)>O f o r m = 0 , 1 , 2  , . . . .  (3.9) 

By increasing m in (3.9), i.e. by incorporating more moments p , ( E )  into the 
determinantal inequalities, stronger constraints on the energy E are being imposed in 
the form of upper and lower bounds. Let H , ,  k = 0, 1 , 2 ,  . . . , enumerate the alternating 
sequence of determinants H ( O , O ) ,  H(l,O), H ( 0 ,  l ) ,  H(1 ,  l ) , .  . ., i.e. H k =  
H ( k  mod 2, [ k/2]). (The case H,, = H(0 ,O)  = p,, = 1 is trivial.) The moment of highest 
order occurring in Hk is Pk. It is observed that the conditions Hk > 0, k = 1 , 2 , 3 , .  . . , 
produce improvements in the upper and lower bounds to Eo, one at a time, in an  
alternating fashion. In  the limit k + a ,  all inequalities are satisfied only by EO, the 
true ground-state eigenvalue of (2.1). The uniqueness of the distribution function F (  r ) ,  
and hence the eigenfunction $ ( r ) ,  may be argued on physical grounds where the 
ground state is non-degenerate. In addition, a sufficient (but not necessary) condition 
that the p, be moments of a unique distribution is given by Carleman’s condition 
(Henrici 1977) that 

(3.10) 

This implies that the moments grow asymptotically at most as p n  - ( 2 n ) ! ,  n + W. In 
general, $( r )  - exp( - a r k )  where k 2 1, so that the p n  grow at most like n !. This ensures 
that the determinantal inequalities Hk > 0 will select a unique ground-state energy Eo 
as k increases to infinity. 

Concerning the perturbation problem studied here, the first set of eigenvalue bounds 
come from the condition H , = H ( l , O ) = p , > O .  From (3.5a), there are three 
possibilities: 

(i) case 1: Z < b 3  E > 3a - fb ’  

( i i )  case 2: Z >  b + E < 3 a - f b 2  

( i i i )  case 3: Z = b + E  = 3 a  - fb‘ .  

(3.11) 

The latter equality in case 3 arises from the fact that the moments pi are necessarily 
positive and  finite, by (3.3) and the existence of a ground-state eigenfunction. In this 
case, p ,  assumes the indeterminate form O/O. In fact, from (3.6), it follows that the 
condition 

P n ( Z , g , A ,  E)I.=,,,_,=O n = 1,2,3,  . . , (3.12) 
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where the E,, are defined in (2.7), ensures that p,, be positive and  finite in the special 
case E = .En-l. Here we see that the moment equations generate the exact polynomial 
energies E ,  obtained earlier. Indeed, from (2.9) and (3.7), 

pn+l(Zg,A,  E ) l , = ~ , , = D n ( z , g ,  A )  n = 0 , 1 , 2  ) . . . .  (3.13) 

In other words, Cramer’s rule in (2.8) for the existence of the polynomial solutions 
4,, corresponds to the necessary indeterminacy relation p,, = 0/0 in (3.6). 

The development of further bounds to E in closed form is tedious and we shall 
resort to numerical methods to extract accurate ground-state energies for several sets 
of parameters in the next section. 

Recall that the methods of § 2 generated an  infinite family of solutions $,, ( r )  = $I,, 
exp( -a r2  - br) with eigenvalues E,  as given by (2.7). Although &( r)  is clearly always 
a ground state, the number of nodes of 4, for n > 1 will be dependent upon the 
parameters Z, g and A .  All exact solutions $, generated by the moment method, 
however, must be nodeless ground states, by virtue of (3.1). Consider, for example, 
the eigenstate 

- 

given by (cf (2.5)) 

1 
4 1 ( r ) =  c,, ( 1-- - r) exp(-ar* - br) (3.14) 

with eigenvalue E ,  = 5a -fb’. Note that $ l ( r )  may or may not be a ground state, 
depending upon whether Z < b or Z > b. (The case Z = b corresponds to Do(Z, g ,  A )  = 0 
in (2.8), yielding cLo(r).) The determinantal condition D1(Z, g ,  A )  = O  is 

Z 2 - 3 b Z + 2 ( b 2 -  a )  = 0 (3.15) 

which, when regarded as a quadratic equation in Z, has roots 

2, = 4 b i f( b’ + (3.16) 

The moment condition p 1  > 0 must also be satisfied, however. From (3.5a), in which 
E = El, it follows that 2 < 6. Since Z+ > 26 and Z -  < b, it follows that Z-  is the only 
admissible root of (3.16). Thus, ILl(r) in (3.14) is nodeless for Z = Z-. 

We expect that this situation extends to each higher exact solution $,(r), i.e. at  
most one root Zi of a higher degree polynomial corresponding to (3.15) would be 
admissible after all positivity conditions are imposed, yielding a nodeless ground state 
with energy E,,. 

We mention that the moment method is applicable to excited states in a natural 
way. To illustrate this briefly, consider the first excited state G l ( r )  as the unique 
square-integrable solution of the Schrodinger equation (2.1) with eigenvalue E ,  and 
having exactly one node. We may write 

$ , ( r )  = ( r -  r 1 ) i d r )  (3.17) 

where rl > 0 and iI( r )  is a non-negative square-integrable function. Let F (  r )  and  F (  r )  
be associated with 4 , ( r )  and (Cll(r) as in (3.1). Now define the moments p, and iin 
of F ( r )  and F ( r ) ,  respectively, as in (3.3). It follows that 

p, = @ , , + I  - rl@,,+,. (3.18) 
The @,,, which clearly define a Stieltjes moment problem, may be expressed in terms 
of the pn which are, in turn, functions of the unknowns E ,  and rl.  The Hankel- 
Hadamard inequalities for the pn will now impose constraints on E ,  and r ,  in the 
form of converging upper and  lower bounds on each parameter. It is interesting that 



Hydrogenic atoms in the potential V(r)  = g r + h r 2  425 

this moment approach locates precisely not only the energy eigenvalue but the position 
of the node of the eigenstate, suggesting a deeper physical connection. A detailed 
study of excited states for this problem is, however, beyond the scope of the present 
paper. 

4. Numerical results 

Before beginning this section, we mention that a coordinate scaling argument yields 
the following relationship between the parameters 2, g, A and E :  

(4.1) 

We have not made use of this relationship in the present study. However, one may 
verify that the upper and lower bounds obtained by the Hankel-Hadamard inequalities 
fulfil this relationship exactly. This explains, in part, the independence of the relative 
errors in bounds with respect to coupling constant values. 

The algorithm employed in this study begins with the bounds in (3.11) and searches 
the real-E line for nested intervals of positivity of the higher-order Hankel determinants 
H k ,  k 3 2. The endpoints of these intervals correspond to increasingly accurate upper 
and lower bounds to E. As k increases, the condition Hk > 0 generally improves the 
bounds in an alternating fashion. 

We mention that the Hankel determinants H ( n ,  m )  may be easily and rapidly 
calculated via Jacobi’s identity (Henrici 1974): 

[ H ( n ,  m ) ] 2 - H ( n - 1 ,  m ) H ( n +  1, m ) + H ( n - 1 ,  m + l ) H ( n +  1, m - 1)=0. (4.2) 

If  the determinants H ( n ,  m ) ,  n 2 0 ,  are arranged in a triangular array as shown in 
figure 1, they are linked together by (4.2) in a star-like pattern. The first two columns 
of the table ( m  = -1,0) are easily initialised and (4.2) may be rearranged to calculate 
columns corresponding to m = 1, 2, 3 , .  . . , recursively. From (3.8) and (3.9), we need 
consider only the two tables corresponding to n = O  and 1. To determine eigenvalue 
bounds for given set of coupling constants, the trial values of E are used to calculate 
the moments in the second column of the table via (3.6). The Hankel array of figure 
1 is calculated outward to the desired determinant H k ,  which is then checked for 
positivity. 

H ( n ,  m )  

H(n, -1) = 1 

H ( n +  1, -1) = 1 H(n,O)=p, ,  
I 

I 
H ( n f 2 ,  -1) = 1-H(n+ l ,  O)=p,,+,-H(n, 1 )  

H ( n + 3 , - 1 ) = 1  H ( n + 2 , 0 ) = p , + ,  H ( n + l ,  1 )  H ( n , 2 )  

Figure 1. The lower triangular array of Hankel determinants H ( n ,  m). Five elements 
connected by Jacobi’s identity in (4 .2)  are  shown to form a four-pointed star. Equation 
(4.2) may be rearranged to calculate columns of this array from left to right. From (3.9), 
the  values of n relevant to the moment method are  n = O  and  1. 
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A note of caution concerning the Jacobi method of (4.2) must be made here. For 
some values of the parameters of this problem, it is possible that neighbouring entries 
in the Jacobi table become so close in value, relative to the fixed precision used, that 
the algorithm becomes plagued with a ‘small denominator problem’ causing either 
inaccurate bound estimates or computer exponent overflows. When this occurs, one 
may circumvent such problems by evaluating the Hankel determinants H (  m, n) directly 
by using a library subroutine. Of course, such direct calculations are performed at the 
expense of computer time. 

In order to illustrate the rapid rate of convergence afforded by the moment method, 
we introduce the errors 

(4.3) 

where E r )  and EL-’ denote, respectively, the upper and lower bounds to the true 
ground-state energy Eo obtained from the condition Hk > 0, which employs the moments 
po . . . pk. Table 1 presents errors for three sets of parameter values Z = 1, g = A = 0.1, 
1 and 5 .  An exponential rate of convergence to Eo is observed in all cases. We also 
note that, for a given value of k, the accuracies in the bounds are similar over the 
range of coupling constant values; in fact, the accuracy is seen to improve with 
increasing strength of the perturbation. 

Table 1. Deviations from the exact ground-state energies for the three sets of parameter 
va lues(Z,g ,A)=( l ,0 .1 ,0 .1) , (1 ,1 ,1) ,  ( 1 , 5 , 5 ) .  Thenotat ion3.6(-3)denotes3.6x10-3.  
The index k denotes the maximum number of moments used in the calculation of the 
bounds. The final entries in each column denote the inequalities established from the case 
k = 12. 

k z = l  g=A=O. l  Z = l  g = A = l  Z = l  g = A = 5  

6 2.2 (-2) 3.6 (-3) 1.9 ( -3)  2.7 (-4) 6.0 (-5) 5.0 (-4) 
7 1.7 (-3) 3.6 (-3) 9.5 (-5) 2.7 (-4) 6.0 (-5) 1.7 (-5) 
8 1.7 (-3) 3.1 (-4) 9.5 (-5) 1.5 (-5) 2.3 (-6) 1.7 ( - 5 )  
9 1.2 (-4) 3.1 (-4) 5.1 (-6) 1.5 (-5) 2.3 (-6) 6.3 (-7) 

IO l .2(-4)  2.4 (-5) 5.1 (-6) 8.8 (-7) 1.0 (-7) 6.3 (-7) 
11 8.9 (-6) 2.4 (-5) 2.7 (-7) 8.8 (-7) 1.0 (-7) 2.5 (-8) 
12 8.9(-6)  1.8 (-6) 2.7 (-7) 5.2 (-8) 2.5 (-8) 

12 - 0 . 1 8 5 0 1 2 ~ € , ~ - 0 . 1 8 5 0 0 1  1.3328452<€,<1.3328455 5.157751 48<E,<5.157751 51 

Tables 2, 3 and 4 list bounds for E ( Z , g ,  A )  in cases where two of the three 
parameters, 2, g and A, are fixed and the third is varied. In table 2, all entries were 
calculated using the moments po,  p i , .  . . , p i s ,  corresponding to the condition H i s  = 
H( 1,7) > 0. In table 3, the subscript N of the highest moment p N  employed to achieve 
the accuracy of each entry is shown. With regards to the entries in table 4, we mention 
that the case Z = 0, g = 0 and  A = 1 corresponds to a three-dimensional harmonic 
oscillator 

(4.4) 

with ground-state eigenvalue Eo = 3 / a .  The moment method yields this exact result 
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Table 2. Lower and  upper bounds,  E ' - '  and  E ' + ' ,  respectively, to the ground-state energy 
E ( Z ,  g,  A 1 for Z = 1 and  g = 0 and A bariable. The moments po to pli were employed. 

0.1 
0.5 
1 .o 
2.0 
5.0 

10.0 
20.0 
50.0 

100.0 
1000.0 
2000.0 
5000.0 

-0.296 088 
0.179 6683 
0.593 771 1 
1.223 7050 
2.561 7326 
4.150 1236 
6.479 9505 

11.265 4474 
16.805 2478 
59.375 4689 
85.734 8038 

138.557 1975 

-0.296 087 
0.179 6690 
0.593 7716 
1.223 7054 
2.561 7330 
4.150 1239 
6.479 9508 

11.265 4477 
16.805 2481 
59.375 4694 
85.734 8042 

138.557 1981 

Table 3. Lower and  upper bounds to the ground-state energy E ( Z ,  g, A 1 for Z = I ,  A = I ,  
g variable. The entries in the final column denote  the subscript N of the highest-order 
moment p\. employed for each g value. 

Z = l , A = l  

-2.0 
-1.0 
-0.5 
-0.1 

0.0 
0.1 
0.5 
1 .o 
2.0 
3.0 
5.0 

-1.171 673 5848 
-0.226 186 8754 

0.196 002 3855 
0.515 935 2547 
0.593 771 2791 
0.670 814 0275 
0.971 615 6507 
1.332 845 4922 
2.014 906 2264 
2.654 098 5688 
3.837 429 8775 

-1.171 673 5845 
-0.226 186 8749 

0.196 002 3858 
0.515 935 2552 
0.593 771 2799 
0.670 8 14 0280 
0.971 615 6513 
1.332 845 4923 
2.014 906 2265 
2.654 098 5689 
3.837 429 8776 

29 
25 
23 
2 1  
31 
31 
29 
19 
15 
11  
1 1  

as case 3 of (3.1 l ) ,  since Z = b = 0 and a = l / f i  (cf (2.4)). One can note, in fact, that 
this table is but a variation of table 2 ,  by virtue of the scaling relation in (2.10). 

5. Summary 

A powerful method of moments has been employed to generate rapidly converging 
upper and lower bounds to the ground-state energy of a radially perturbed hydrogenic 
atom. Accurate values of the energy are obtained over a wide spectrum of coupling 
constant values. The method is applicable to general quantum mechanical Hamil- 
tonians with rational function potentials. In  addition, the positivity criterion of the 
moments generates an infinite family of exact s-wave solutions subject to special 
relations existing between the coupling constants. 
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Table 4. Lower and upper bounds, E'-' and E'+ ' ,  respectively, to the ground-state energy 
E(2, g, A )  for g = 0, A = 1 and the nuclear charge Z variable. The moments po  to p , 5  were 
employed. 

0.1 1.985 547 78 1.985 547 79 
0.5 1.407 889 7 1.407 889 8 
1 .o 0.593 771 1 0.593 771 6 
2.0 - 1.443 047 - 1.443 041 
5 .O -12.382 1 -12.381 6 

10.0 -49.97 -49.96 
20.0 -200.01 -199.96 

Acknowledgments 

ERV wishes to acknowledge the tenure of a Natural Sciences and Engineering Research 
Council of Canada Postdoctoral Fellowship during the course of this work. CRH 
acknowledges the support of a US National Science Foundation grant no RII8312. 

References 

Austin E J 1981 Mol. Phys. 40 893 
Avron J E 1981 Ann. Phys., N Y  131 73 
Blankenbecler R, DeGrand T and Sugar R L 1980 Phys. Rev. D 21 1055 
Baker G A J r  and Graves-Morris P 1980 fade  Approximanrs, Part I :  Basic Theory, Parr I!: Extensions and 

Eichten E, Gottfried K, Kinoshita T, Lane K D and Yan T-M 1978 Phys. Rev. D 17 3090 
Handy C and Bessis D 1985 Phys. Rev. Lett. 55 931 
Henrici P 1974 Applied and Computafional Complex Ana1,vsis vol 1 (New York: Wiley-Interscience) 
- 1977 Applied and Computational Complex Analysis vol 2 (New York: Wiley-Interscience) 
Killingbeck J 1977 Rep. h o g .  Phys. 40 963 
- 1978a Phys. Left. 63A 223 
- 1978b Phys. Left.  67A 13 
Killingbeck J, Jones M N and Thompson M J 1985 J .  Phys. A :  Math. Gen. 18 793 
Lai C S 1981 Phys. Rev. A23 455 
Lai C S and Lin H E 1982 J .  Phys. A :  Math. Gen. 15 1495 
Quigg C and Rosner J L 1979 Phys. Rep. 56 167 
Richardson J L and Blankenbecler R 1979 Phys. Rev. D 19 496 
Saxena R P and Varma V S 1982a J.  Phys. A :  Math. Gen. 15 L149 
- 1982b J .  Phys. A: Math. Gen.  15 L221 
Vrscay E R 1984 Phys. Rev. Left .  53 2521 
- 1985 Phvs. Rev. A 3 1  2054 

Applicarions (Reading, MA: Addison- Wesley) 


